Metal Oxide Semiconductor - definitie. Wat is Metal Oxide Semiconductor
Diclib.com
Woordenboek ChatGPT
Voer een woord of zin in in een taal naar keuze 👆
Taal:

Vertaling en analyse van woorden door kunstmatige intelligentie ChatGPT

Op deze pagina kunt u een gedetailleerde analyse krijgen van een woord of zin, geproduceerd met behulp van de beste kunstmatige intelligentietechnologie tot nu toe:

  • hoe het woord wordt gebruikt
  • gebruiksfrequentie
  • het wordt vaker gebruikt in mondelinge of schriftelijke toespraken
  • opties voor woordvertaling
  • Gebruiksvoorbeelden (meerdere zinnen met vertaling)
  • etymologie

Wat (wie) is Metal Oxide Semiconductor - definitie

TYPE OF FIELD-EFFECT TRANSISTOR
Mos technology; Metal oxide semiconductor field-effect transistor; MOSFETs; Metal-Oxide-Semiconductor Field-Effect Transistor; Double Diffused MOS; IGFET; Mosfet; Metal Oxide Semiconductor; Mosfets; DMOS; Mofset; Metal–oxide–semiconductor structure; Dmos; MOS FET; CMOSFET; Metal-Oxide-Semiconductor structure; MISFET; Metal oxide semiconductor; Metal–Oxide–Semiconductor structure; N-FET; Metal oxide semiconductor field effect transistor; Metal-oxide-semiconductor field-effect transistor; Metal-oxide-semiconductor structure; Metal–oxide–semiconductor field-effect transistor; Metal–Oxide–Semiconductor Field-Effect Transistor; Metal–Oxide–Semiconductor field-effect transistor; MOS capacitor; Metal-oxide-semiconductor; MOSFET heatsink; MOSFET heat sink; Metal-Insulator-Semiconductor Field-Effect Transistor; Metal–oxide–semiconductor; Igfet; Metal-oxide-silicon; Insulated-gate Field-effect Transistor; Insulated gate Field-effect Transistor; Insulated gate Field-Effect transistor; Insulated Gate Field-effect Transistor; Metal Oxide Semiconductor Field Effect Transistor; MOS-FET; Insulated gate field-effect transistor; Dual-gate FET; Dual-gate field-effect transistor; Metal-Oxide-Semiconductor field-effect transistor; Metal-oxide semiconductor; NFET; MOSFET scaling; NMOS transistor; PMOS transistor; PMOS FET; NMOS FET; MOS transistor; MOS technology; Metal–oxide–silicon
  • MOSFET showing gate (G), body (B), source (S) and drain (D) terminals. The gate is separated from the body by an insulating layer (pink).

Metal Oxide Semiconductor         
<electronics> (MOS) The three materials used to form a gate in the most common kind of Field Effect Transistor - a MOSFET. [Other MOS devices?] (1996-05-27)
Complementary Metal Oxide Semiconductor         
  • drain and source]] respectively.
  • [[NAND gate]] in CMOS logic
  • The [[physical layout]] of a NAND circuit. The larger regions of N-type diffusion and P-type diffusion are part of the transistors. The two smaller regions on the left are taps to prevent [[latchup]].
  • Simplified process of fabrication of a CMOS inverter on p-type substrate in semiconductor microfabrication. In step 1, [[silicon dioxide]] layers are formed initially through [[thermal oxidation]] Note: Gate, source and drain contacts are not normally in the same plane in real devices, and the diagram is not to scale.
TECHNOLOGY FOR CONSTRUCTING INTEGRATED CIRCUITS
Complementary Metal Oxide Semiconductor; Complimentary Metal Oxide Semiconductor; Complementary metal-oxide-semiconductor; Complementary metal-oxide semiconductor; CMOS based; Cmos; CMOS transistor; COS/MOS; Complementary metal–oxide–semiconductor; Complementary metal–oxide semiconductor; Complementary symmetry metal oxide semiconductor; Complementary-symmetry circuit; Complementary metal oxide semiconductor; Complementary-symmetry; CMOS logic; C-MOS; Complementary MOS; Complementary Symmetry Metal-Oxide Semiconductor; Complementary Metal–Oxide–Semiconductor; Complementary Metal-Oxide-Semiconductor
<integrated circuit> (CMOS) A semiconductor fabrication technology using a combination of n- and p-doped semiconductor material to achieve low power dissipation. Any path through a gate through which current can flow includes both n and p type transistors. Only one type is turned on in any stable state so there is no static power dissipation and current only flows when a gate switches in order to charge the parasitic capacitance. (1999-06-04)
Metal Oxide Semiconductor Field Effect Transistor         
<electronics> (MOSFET) A Field Effect Transistor in which the conducting channel is insulated from the gate terminal by a layer of oxide. Therefore it does not conduct even if a reverse voltage is applied to the gate. (1997-02-24)

Wikipedia

MOSFET

The metal–oxide–semiconductor field-effect transistor (MOSFET, MOS-FET, or MOS FET) is a type of field-effect transistor (FET), most commonly fabricated by the controlled oxidation of silicon. It has an insulated gate, the voltage of which determines the conductivity of the device. This ability to change conductivity with the amount of applied voltage can be used for amplifying or switching electronic signals. A metal-insulator-semiconductor field-effect transistor (MISFET) is a term almost synonymous with MOSFET. Another synonym is IGFET for insulated-gate field-effect transistor.

The basic principle of the field-effect transistor was first patented by Julius Edgar Lilienfeld in 1925.

The main advantage of a MOSFET is that it requires almost no input current to control the load current, when compared with bipolar transistors (bipolar junction transistors/BJTs). In an enhancement mode MOSFET, voltage applied to the gate terminal increases the conductivity of the device. In depletion mode transistors, voltage applied at the gate reduces the conductivity.

The "metal" in the name MOSFET is sometimes a misnomer, because the gate material can be a layer of polysilicon (polycrystalline silicon). Similarly, "oxide" in the name can also be a misnomer, as different dielectric materials are used with the aim of obtaining strong channels with smaller applied voltages.

The MOSFET is by far the most common transistor in digital circuits, as billions may be included in a memory chip or microprocessor. Since MOSFETs can be made with either p-type or n-type semiconductors, complementary pairs of MOS transistors can be used to make switching circuits with very low power consumption, in the form of CMOS logic.

Voorbeelden uit tekstcorpus voor Metal Oxide Semiconductor
1. There are a number of adequate ones on the market at prices lower than $50, but many rely on low–grade sensors using C.M.O.S. technology (for complementary metal oxide semiconductor) that offer lower resolutions and send fewer frames a second.